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Highest weight state description of the isotropic spin-1 chain
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We introduce an overcomplete highest weight state basis as a calculational tool for the description of the
isotropic spin-1 chain with bilinear exchange coupling J; and biquadratic coupling J,. The ground state can be
expressed exactly at the three special points in the phase diagram where the Hamiltonian corresponds to a sum
of nearest neighbor total spin projection operators (J;=0>J,, J;=-J,<0, and J,=-J,/3>0). In particular, at
the phase transition point J;=-J,<0, it is possible to exactly compute the ground states, excited states,
expectation values, and correlation functions by using the new total spin basis.
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I. INTRODUCTION

There has been a large interest in the isotropic one-
dimensional spin-1 chain ever since Haldane’s prediction'-
that the excitation spectrum in integer spin Heisenberg
chains should show a gap in strong contrast to the model
with half-integer spins. The general SU(2) invariant spin-1
chain model with nearest neighbor coupling is given by

N
H= 2 [1\S;-Sis1 = J2(S; - Six)?]
i=1
N

=JE [cos O@S;-S;,; —sin O (S;-S;,1)7], (1)
i=1

where S; are the spin-1 operators at site i in a one-
dimensional periodic lattice with N sites. Exact analytical
solutions at special points were obtained by Affleck,
Kennedy, Lieb and Tasaki (AKLT)>>* Sutherland,’
Kliimper,®® and Barber and Batchelor,” which supported
Haldane’s hypothesis and established an interesting phase
diagram'®!" as shown in Fig. 1. Experimental results on
quasi-one-dimensional spin-1 compounds such as “NENP,”
CsNiCls, or AgVP,Sg also confirmed the gap and the exis-
tence of effective s=3 spins near boundaries.'>'? The spin-1
chain was also one of the driving forces in the development
of the density matrix renormalization group algorithm, which
in turn provided very accurate estimates of the excitation
spectrum and the correlation lengths at the Heisenberg
point.!413

By changing the ratio of the Heisenberg coupling J; and
biquadratic exchange term J,, the system can be tuned
through at least three antiferromagnetic regions'' and one
ferromagnetic phase, as shown in Fig. 1. The three estab-
lished antiferromagnetic regions are called Trimer, Haldane,
and Dimer, of which the last two are gapped. Because in
most substances the biquadratic exchange term is much
smaller compared to the bilinear term, the experimental re-
alization in regions with dominant biquadratic exchange term
was not possible for a long time. First experimental success
was achieved with LiVGe,0,, which appears to be well de-
scribed by a large positive value of J,.'°

The similarity of the phase diagrams of the spin-1 chain
compared to the spin—% chain with next nearest neighbor cou-
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pling is striking. The spin-% model of a periodic chain with
sites N is given by

H=2,(J;8;" i1 +J28; - Si10)

N
=7, (cos OS;- S,y +5Sin IS; - S;10), (2)

where s; are the spin-% operators at site i. The spin-% chain
also shows three antiferromagnetic regions, two of which are
believed to be gapped, and one ferromagnetic phase as
shown in Fig. 1. It is known that the AKLT point in the
spin-1 chain is in the same phase as the Majumdar-Ghosh
point'” in the spin-3 chain, i.e., the two points B and b in Fig.
1 can be connected in a more general parameter space.'® We
also see that the two gapped phases in both the spin-1 and
the spin-% chain are separated by an integrable point with
SU(2), symmetry (points G and g). Moreover, in both cases,

FIG. 1. (Left) Phase diagram of the spin-1 chain as function of
®: A(0), pure Heisenberg chain; B(—arctan 1/3), AKLT point (Refs.
3 and 4); C(-m/4), Sutherland model (Ref. 5); D(-m/2), phase
transition (Ref. 19); E(37/4), phase transition (Refs. 20-22);
F(ar/2), exactly solvable (Refs. 6-8); and G(w/4), SU(2), inte-
grable point (Refs. 23-25). (Right) Phase diagram of the spin—%
chain as function of 9: a(0), Heisenberg chain (Ref. 26);
b(arctan 1/2), Majumdar-Ghosh point (Ref. 17); ¢(~0.24), critical
point (Ref. 27); d(—/2), phase transition; g(7/2), two independent
chains, SU(2); XSU(2), integrable; and e(w—arctan 1/4), phase
transition (Ref. 28). The gaps are generically denoted by A. The
points B, D, and E are projection points treated in this paper.
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the phase transition to the ferromagnetic behavior occurs at
points where the Hamiltonian (1) can be written in terms of
total spin projection operators of neighboring spins (points
D, d, E, and e). Therefore, the main difference between the
two phase diagrams is that in the spin-1 chain the isotropic
point A happens to be in a gapped phase, while the isotropic
point a falls in a gapless phase in the spin-% chain.

In this paper, we develop a highest weight state basis
which can be used to calculate a number of exact properties,
especially at the “projection points” B, D, and E, where the
Hamiltonian can be written as a sum over quintet, triplet, or
singlet projection operators of two neighboring spins, respec-
tively. In Sec. II, we introduce the general total spin basis,
which is in spirit similar to the valence bond basis for spin-
% systems where the total spin of pairs of spins in the system
is specified. In Sec. III, we demonstrate how to calculate the
ferromagnetic excitations with total spin s=N—1 in the new
basis as a simple illustration. At the singlet projection point
D, the ferromagnetic excitations become dispersionless and
it is possible to construct excitations with spin s=N-2 in
agreement with earlier results!® as shown in Sec. IV. In Sec.
V, we consider the triplet projection point E at J;=—J,<0
(@z%) in a system with an even number of sites N. At this
phase transition, the antiferromagnetic s=0 and ferromag-
netic s=N ground states are degenerate, but also ground
states with any even total spin s exist, leading to a large
degeneracy. We are able to calculate the correlation functions
exactly, which remarkably do not decay along the chain,
even for the antiferromagnetic ground state. Using the high-
est weight state basis, excited states can also be constructed
exactly at this point. For completeness, we also show how to
express the AKLT state at the quintet projection point B (®
=-arctan 1/3) in the new basis in Sec. VI. We conclude in
Sec. VII. The appendixes explain how operators are applied
and scalar products are computed in the highest weight state
basis.

II. TOTAL SPIN BASIS FOR SPIN-1 SYSTEMS

In this section, a basis set of highest weight states with
given total spin s is introduced. Similar to the valence bond
basis for spin—% systems, it is possible to specify pairs of
spins (so-called valence bonds) which have definite total
spin. In spin-1 systems, pairs of spins can now be quintets
(s=2), triplets (s=1), or singlets (s=0). The most important
difference to an ordinary S° basis is that in this construction,
“bonds” are specified instead of local quantum numbers.

We use a notation similar to the conventional one for the
spin-3 chain by Majumdar and Ghosh'? {i},i)},_o=
|S:0’m=0>9 [ll ’i2]mE |S= 1 ,m), and (ll ’l.Z)mE |s:2,m>,
where s is the total spin of the pair of spins at sites i; and i»,
and m is the S° eigenvalue. An important simplification for
SU(2) invariant systems is that only highest weight states
(hws) with m=s have to be considered as representatives of
degenerate multiplets, since it is possible to construct an en-
tire degenerate multiplet by applying the total spin lowering
operator S"=2;S;, which commutes with H.

Accordingly, it is useful to define bonds as pairs of two
spins, which are in a highest weight state of total spin 2, 1, or
0,
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(i) =]+ +),
[ip il =(|+0)— |0+ >)/\E,

{inisto= (| +=)+]- +)=[00)A3. 3)

Singlet and quintet bonds have even parity under exchange
of indices, while the triplet bonds are odd. Using this nota-
tion, it is now possible to construct a highest weight state of
the total system by specifying all bonds as follows:

0 T s
AN

- '
i =i on Lo d1 Lo Ainereindo,
4)

|¢s(i1’ ..

assuming an even number of lattice sites N. The number of
quintet, triplet, and singlet bonds, Q, T, and S, defines the
total spin s=20Q+7. The wave function is a function of the
pairwise different ordered indices i,,i,,...,iy, Which are
used to specify the bonds. The order of the quintet indices
does not matter since all spins in quintet bonds are in the
state |+), so Eq. (4) can be simplified by only specifying
which spins belong to the quintets (i, ...,i5p)0. Also, the
order within each singlet and triplet bracket is irrelevant up
to a possible minus sign. To simplify the calculations, it is
sometimes useful to specify the bonds graphically as fol-
lows:

{in,ia}o=/"\ [i,00)h =1 ] (i1,19) = o®
11 19 11 12 11 12
(5)

where no bond connections are assigned to quintets.
Clearly, states of the form Eq. (4) are indeed highest
weight states of the entire system, since

z
Stot

W) =mlys),

SZ ) = s(s + D), (6)

where s=m=20+T. Here, the first line is obvious from Eq.
(3), and the second line follows since the total spin s has to
be at least m, but can be at most the sum of the individual
bond spins s=2Q+T.

States of the form Eq. (4) can now be used as basis states
in order to express any hws of the system. For this purpose,
it is sufficient to only consider basis states with no triplets
T=0 (for s=2Q even) or one triplet pair T=1 (for s=20Q
+1 odd), since states with T7>1 can be expressed by the
following linear combination:
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[1,2]1[3, 4] & (2,3)2{1,4}0 +(1,4)2{2,3}0 — (1,3)2{2,4}0
—(2,4)2{1,3}
’—N—WO(mjLO/\O— -/-\—/N..
(7
In the hws basis defined in this way, it is possible to
determine the action of any SU(2) invariant operator involv-
ing two spins, i.e., linear combinations of S;-S,; and
(S;-S;,1)%. For example, for states with two singlet bonds, we
find the following relations:

S Siilis iholi + L kYo ={j, i + Uoli, ko = {j. AYolisi + 1},

(S;- Si+l)2{i’ itoli + Lk}o = {j.ifoli + Lk}o + {j. kboli, i + 1},

(8)
or, equivalently,

Si'Si+1/\ /\ = — 7\
ioii+1k joii+1lk j ii+1k
joii+1lk joii+lk  j ii+1k

©)

Since the terms in the Hamiltonian (1) operate only on two
spins at a time, it is always sufficient to consider clusters of
two bonds irrespective of the length of the chain. A complete
list how S;-S;,, and (S;-S,,;)* operate on the states can be
found in Appendix A.

From those relations (A) it is clear that the representation
of linear combinations in the hws basis in Eq. (4) is closed
under the operation of any local SU(2) operator, including
permutations. Therefore, starting with any hws, all other
states in the corresponding sector of the Hilbert space can be
represented as a linear combination in the hws basis (4).
However, the linear combinations are not necessarily unique
since the hws basis is overcomplete and not orthogonal. In
particular, for the s=0 sector, the hws basis is linearly inde-
pendent up to N=6 spin, while for N=8, the basis becomes
overcomplete. This means that no relation between singlet
states with three singlet bonds exists, while there are 14
(relatively complicated) relations involving four singlet
bonds, which will not be discussed here. In general, there are
N!/[2<N‘5)/2(%)!s!] basis states of the form Eq. (4) for a
given even spin s=2Q. For comparison, if only the quantum
number in the z direction $°=0 in the ordinary S° basis is
specified, the number of basis states is given by |1

+EINV:2=] WZNJM' which is a larger basis than the s=0 hws

basis up to N=18. The situation for N=4 spins is discussed
in detail in Appendix B as an example.

It is also possible to determine scalar products in the hws
basis using a straightforward algorithm as presented in Ap-
pendix C. In particular, the scalar product between two total
spin s=0 states can be obtained by the minimum number y
of index exchanges Vi, needed to transform the indices
i, ...,y into an equivalent bond configuration correspond-

ing to indices ij, ..., iy,
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<¢s=0(il’ 71N)|¢s=0(li’ ?ljlv»

Y
—— 1
= <¢x=0(il? ’lN)|V V|l//s=0(il’ 7iN)> = ;,

(10)
Interestingly, this means that any basis state in the s=0 sector
is never orthogonal to any other s=0 basis state.

III. FERROMAGNETIC EXCITATIONS

In order to demonstrate how to apply the new basis, we
consider as an example excitations on the ferromagnetic state
|F)=(1,2,...,N)y, which is always an eigenstate with en-
ergy Ey=N(J,—J,)=JN(cos ®—sin ®). In order to construct
a spin-wave excitation |k) with total spin s=N-1, we can
write

ky= 2 iy ix)i(is. .. iny-1- (11)
i1#i

Here, we require k# 0 since the k=0 “excitation” of the
ordinary spin-wave construction actually corresponds to an
s=N multiplet state. We will now show explicitly that the
state in Eq. (11) is an eigenstate of the Hamiltonian (1) for
any J, and J,. In order to apply the operators S;-S,,; and
(S;-S;11)?, we write states involving triplet bonds with the
sites i or i+ 1 separately,

lky = e i,i+ 17,(. )ny + e i+ 1,15 ()

+ 2 elki[l.,l.3]l(...,i+ 1, )N—l

i3F i+l
+ 2 e DG 1]y e v
iy#i
+ 2 M Cnit ], )
i3F i+l
+ 2 i 15l o )y
iy#i
+ 2 Mgy 1)y (12)
[PRES IR

Now we use the relation from Appendix A

S Siv1Guiholi + 1,k]y = (i + 1)[i,k]y,

(Si - Siv)*Gui)ali + 1,k]y = (. i)l + 1,K];. (13)
By summing over all i, we obtain

N

> Si- Sinilk) = Nlk) +2[cos(k) — 1][k),
i=1

N

2 (Si‘si+1)2|k>=N|k>~ (14)

=1
This means that for a general Hamiltonian (1),
H|F)=EyF), Hlk)=Egk)+2J[cos(k) - 1]lky, (15)

which is the well-known ferromagnetic dispersion.
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IV. MODEL AT J;=0>J, (@=-%)

One immediate consequence of the dispersion relation
(15) is that the excitations become dispersionless at the phase
transition point D for J;=0,

N

H=—122 (S,~Si+1)2, (16)
i=1

where we assume J,<0. At this point, it is also possible to
express the Hamiltonian in terms of a total spin s=0 projec-
tion operator of two neighboring spins PO(Si,S,-H):—%

1 3
+3(S;- St

N
H=Ey-3J,2 Py(SiSu1), (17)

i=1

where Ey=-NJ,. For this model, we are able to compare
with known results,'® which serves as an illustration of how
to use the hws basis. We know from Eq. (13) that any state
with total spin s=N—1 is an eigenstate and degenerate with
the ground state. Excitations of the form |k>:2,-1 exp(iki,)
X{iy, i1+ 1}o(i3,04. .. i) N_o» With total spin s=N—-2, also be-
come eigenstates at this point. This can be shown again by
decomposing |k) in the following form:

N
k)= 25 e® i iy + Uo(eosoos o yea
i=1
=€1ki{i’i+ 1}0(_.., ey ---)N—2
+ e VG =10 s N
+ e DG i+ 280y s
+ E e’ki3{i3,i3+1}o(~-’i’i+1’"')N—Z‘
iy#ie1ii+]
(18)
Using Eq. (A2) from Appendix A, we find
(Si-Sun)’ll) =3¢+ Thol-s oo D
+(e®*+ e e i i+ (oo oy oo Iya + 1K)
(19)

Finally, we sum over all i, and obtain the dispersion relation
E,(k)=—J,[3+2 cos(k)]+E,, which is gapped in agreement
with earlier results from Ref. 19.

V. MODEL AT J;=-J,<0 (@=3F)

We now turn to the other ferro-antiferromagnetic phase
transition point E at J,=—J,<<0, which has been studied in
different contexts.>120-22 Using the basis of hws in Eq. (4),
we are now not only able to describe all degenerate ferro-
and antiferromagnetic ground states explicitly, but also cal-
culate correlation functions and excited states exactly at that
point. The model is given by the Hamiltonian
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N

H= J1E [S;-Si +(S;- Si+1)2] (20)
i=1

for a periodic chain with even number of sites N. It is pos-
sible to express the Hamiltonian (20) in terms of triplet pro-
jection operator of two neighboring spins P(S;,S;.;)=1
—5(8;-8i1) = 3(Si-Sisn)?

N

H=E0_2J1E Pl(Si’SHl)» (21)
i=1

where Ey=2NJ,. Since the operator P; can only have posi-
tive eigenvalues and J; <0, the system has so-called opti-
mum ground states,?’ which must be in a configuration
where no two neighboring spins are in a triplet configuration,
so that P,|0)=0 for all nearest neighbors.

Another useful representation can be obtained by using
the operator V; ;,;, which exchanges the quantum numbers of
two neighboring sites. Since both singlets and quintets are
even under exchange, we have P(S,,S;,)=(1-V,;1)/2
and, therefore, the Hamiltonian becomes

N
H=JN+ 1,2 Vi (22)

i=1

which is, in fact, SU(3) invariant.>'' Hence, ground states of
the Hamiltonian (22) can be constructed by requiring
V.is1/0)=[0) for all i, i.e., the ground states are invariant
under the application of all permutation operators V; ;,;.!'?!
In order to construct such a ground state, we use the hws
notation (4) to describe the antiferromagnetic and ferromag-
netic ground states as follows:

|F)=(1,2,...,N=1,N)y,

AF) o« 2 {ivistolisiabolissico - - » (23)
P

where X, is the sum over all possible permutations of
i1,...,iy. It is clear that the states defined in this way are
eigenstates of all permutations V; ;. and, therefore, immedi-
ately ground states of the Hamiltonian (20) with definite total
spin s=N and s=0, respectively. Therefore, the energies of
the ferro- and antiferromagnetic states cross at the phase
transition point as expected, but, in addition, we find that it is
possible to construct a ground state for each sector with an
even spin s by simply combining permutations of quintet and
singlet bonds

|O>v o E (il?iZ’ cee vix—l’i.v)s{is+lsis+2}0 cee {iN—l’iN}()’
P

(24)

which is in accordance with SU(3) invariance.!! There are no
other ground states.

It is interesting to note that in the spin-% chain at the
phase transition point e in Fig. 1, the ground state can also be
written as a permutation over all possible valence bonds.”

For each ground state, all pairs of spins are equally en-
tangled with each other. Consequentially, also the correlation

014429-4



HIGHEST WEIGHT STATE DESCRIPTION OF THE...

function is the same between any two spins in the chain,
independent of distance,

s(s+1)-2N
N(N-1)

which follows from expanding (S;, )=(Z,. Si-S j+E,»Si2) and
can also be verified by direct calculation with the help of the
scalar product in Appendix C. The correlation function varies
from (AF|S;-S|AF)=—+% up to (F|S;-S;|F)=1. Higher or-
der correlation functions can then also be determined itera-
tively by the wuse of P(S;,S)[0),=[1-S;-S;/2
—(S;-S))?/2]|0);=0 for any pair of spins, so that, e.g.,
((81-8)2)=2~(S;"S)).

A magnon excitation can now be constructed in a similar
spirit as in Eq. (11) on any of the ground states. For example,
a spin-1 excitation on the antiferromagnetic state is given by

k) A = > e’k"l[il,iz]E {issigdo - (26)

iy #i ,
with k# 0. In order to show that thIiJs state is an eigenstate of
the Hamiltonian (22), a decomposition as in Eq. (12) can be
used. Applying V;;,; and then summing again over all i, we
obtain

3<O|Sl : S]|0>s= > (25)

Hlk) = E\(K)|k),,  E(k) =2J,[cos(k) = 1]+ Eo, (27)

where |k), is now the corresponding excitation on the ground
state |0), with any even spin s in Eq. (24).

Interestingly, the permutational ground states in Eq. (24)
are, in fact, independent of the individual coupling strengths
along the chain and are even ground states of higher dimen-
sional models as long as J;=—-J, for all couplings. However,
the excited states in Eq. (26) require translational invariance.

VI. MODEL AT J;=-J,/3>0 (@=-arctan })

Finally, we consider the famous AKLT model** at point B
in the phase diagram,

N N
1
H=J12 (Si “Sii + E(Si : Si+l)2) =Ey+ 2J12 P5(S:.S:.1),
i=1 i=1
(28)

where J,;>0, Ey=—3NJ;, and P,(S;,Si1)=1+3(S;-Suy)
+é(S,~S,~ .1)? is the projection operator onto the quintet state
of two neighboring spins. It is of course well known how to
express the ground state |0) at this point,* but it is instruc-
tive to gain an alternative description in terms of the hws
basis.

Analogously to the other projection points, the Hamil-
tonian (28) has an optimum ground state |0), which must
obey P,(S;,S,,1)|0)=0 for all adjacent spins. Using the rela-
tions in Appendix A, we know

P5(S;,Si41) {i,i+ 1} =0,
Py(Si, Si1) (g ifoli +1,k}o — {J,i 4+ 1}o{i, k}o) =0,

le.:

Py(Si,Sis1) (/N /N — /7NN )=0. (29)
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Accordingly, we can construct the ground state by ensuring
that for neighboring spins which are not coupled by a singlet
bond, the corresponding crossed state is subtracted. The fol-
lowing state is therefore a ground state:

|0> o E (_ 1)No‘ of crossingx(P){l’2}0{3’4}0 o {N— LN}o,
P

(30)

where the number of crossings is defined as the crossing of
singlet bonds in the graphical representation in Eq. (5). For
example, in the N=4 chain, the ground state is given by

|0> X ({172}0{374}0+{154}0{273}0_{274}0{173}0)
< /NN + N SN\

For a finite chain with open boundary conditions, the
Hamiltonian (28) has four degenerate ground states, one sin-
glet, and one triplet. The singlet is given by Eq. (30) with
s=0. By using the relation from Appendix A, we find for
triplet states

Po(Ss,Sia1) [iyi + 1)1 =0
Py(Si,8i41) ([, il + 1, ko — [, i+ 1i{é, ko) = 0
et Py(Si,Siva) (I 1/ N\ — [ /T )=o0.
(31)

Hence, the triplet ground state is analogously given by

0) = 35 (= )N o eroine P 1,2],{3,4)g ... {N = 1N,
P!

(32)

where the permutations P’ are restricted so that the indices in
the triplet bond always remain in ascending order. This
ground state is a triplet of total spin s=1, in accordance with
previous results.>*

VII. CONCLUSIONS

We have introduced a highest weight state basis as a total
spin representation for the Hilbert space of spin-1 systems. In
this basis, it is possible to compute scalar products and the
action of SU(2) invariant operators for analytical and nu-
merical calculations. However, the new basis states are not
orthogonal and overcomplete.

In the ferromagnetic phase and at the phase transition
point D (@=-7/2), it is possible to construct spin-wave
excitations explicitly in the new basis. Also, the AKLT
ground states at point B (tan @=-1/3) can be explicitly ex-
pressed using the highest weight states.

At the phase transition point E (®=37/4), we find all
degenerate ground states which are multiplets of even total
spin s=0,2,...,N. Using the hws basis, it is now possible to
express all ground states exactly as permutations over hws
bonds. The spin correlation functions (S;-S;) have been de-
termined, which remarkably do not decay along the chain
even for the antiferromagnetic state. The hws basis also al-
lows the explicit construction of excited states with odd spin
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and the corresponding dispersion relation, which is gapless.
There is some hope that these results at point £ can be used
in future works as an ansatz for wave functions in the anti-
ferromagnetic region in order to investigate the phase be-
tween points E and F, which is still not fully understood.?’->?
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APPENDIX A: ACTION OF SU(2) INVARIANT
OPERATORS

The action of h;;,;=S;-S;,; on bonds where both indices
are in the same singlet, triplet, or quintet coupling is imme-
diately given by the respective eigenvalues

Ry idisi+ Uo==2{i,i + 1},
hijalii+ 1]y ==[i,i+1];,

hii1 i+ 1)y = (0,0 + 1),. (A1)

Using the definition in Eq. (3), it is straightforward to deter-
mine the action of 4;;,;=S;-S;,, on all possible hws states as
follows:

hi,i+1{j’i}0{i + L kYo ={j,i + 1oli, kYo — . kboli,i + 1},
hi,i+1[jvi]1{i + Lkyo=[j,i + 1 {i, kYo = U k] {isi + 1},
hi 1 (Go0)odi + 1,k = (i + 1){i kYo — (k)i i + 1},

hi o1 (o0)oli + 1Lk]y = (i + D)ol d,k]y.

2 _
i+l T

(A2)

The application of & (S;-S;;1)? is then given by applying

Si'Si+1 twice

1 il iYoli + Lk = (i iboli + 1KY + {,Kolisi + 1,
hz'2,i+1[j7i]l{i + Lo = [, i]i{i + 1 k}o + [, k] {i,i + 1},
1 ey (i) + 1k = (o) + Lk + (o k)o{i,i + 1},

121 GoD)oli + 1,k]y = (oi)oli + 1,k (A3)

In this way, the action of any SU(2) invariant operator in-
volving two spins can be calculated as a linear combination
of S;-S;,; and (S;-S;,;)? using the above relations.

APPENDIX B: HIGHEST WEIGHT STATES BASIS FOR
N=4 SPINS

We consider a spin-1 system consisting of four sites and
find all hws states of the form Eq. (4), using at most one
triplet bond. In the spin s=0 sector, we find
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{1 > 2}0{3’4}09{1 ’ 3}0{274}07{1 74}0{2’ 3}09 (B 1)

in the spin s=1 sector, we find

[1.2]:{3.4}0,[1.31,{2,4}0,[1,411{2,3}o,

[3’4]1{1 ’2}0»[2»4]1{1 ’3}0’[2’3]1{1 a4’}0; (B2)

in the spin s=2 sector, we find

(172)2{374}07(173)2{274}07 (174)2{273}0’

(374)2{1’2}0’(2’4)2{173}0’(2’3)2{1a4}0;

in the spin s=3 sector, we find

(1a2)2[374]1’(1,3)2[2’4]1’(1a4)2[273]1,

(B3)

(3’4)2[1vz]l9(294)2[1’3]]’(2’3)2[1’4]1;
and the ferromagnetic state is

(1’293,4)4‘

(B4)

(B5)

Using the addition rules for angular momenta 1®1®1
®1=3-006-196-203-3d1-4, we see that the states of
spin s=0, s=1, s=2, and s=4 are linearly independent, as
can also be checked directly using Eq. (3). For the s=3 sec-
tor, we obtain the following linear relations:

m ° :o,_To—l—’_To o,

om :o’_To—l—o o’_T,
W :o,_To—l—o o/_W—l-,_Too_

B6
APPENDIX C: SCALAR PRODUCT (B6)

First, we note that only states with equal total spin, i.e.,
states with equal number of singlet S, triplet 7, and quintet O
bonds, have a nonvanishing scalar product. Using Eq. (3), we
write the hws (4) in the expanded form

i) = FTl = E |+<51) +(52Q)>|ti1(2Q+1)l;(2Q+2)>
V2743 (t1.1p) e 7(s7.57) X

X |s{2on)f20mly | [s{iv-Dsi), (€

where 7={(+,0),-(0,+)} and X={(+,-),(-,+),—(0,0)}.
The algorithm on how to compute the scalar product is based
on determining the number of different combinations of S°
product states in the decomposition (C1) that are the same in
the two states in the scalar product. This number multiplied
by the corresponding normalization factors gives the scalar
product.

For illustration, let us consider two states in a chain of
length N=10 as an example,

|1> = (1’2’3’4)4[5’6]1{7’8}0{9’ 10}0,

2)=(1,2,5,7).[3,6],{4.8},{9,10}.

In order to calculate the scalar product (1]2), we simply
count the number of states that agree on both sides after the
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decomposition (C1) and then multiply by the normalization.
The quintet spins (1,2,3,4), on the left hand side and
(1,2,5,7)4 on the right hand side must all be in the state |+).
Therefore, according to Eq. (3), only states can agree on both
sides of the scalar product where the S° eigenvalues of the
spins at site 6 is |0) and at site 8 it must be |—). We have
exactly one possibility of different combinations of product
states to agree, which must be multiplied by the respective
normalizations in Eq. (3). The spins with the label 9 and 10
are already in the same state and do not change the scalar
product (or, alternatively speaking, this bond contributes a
factor of 3 both in the numerator and denominator). There-
fore, we obtain, after multiplying by the normalization fac-
tors, (1|2)=3/(2-3%)=1/(2-3). Obviously, scalar products
factorize according to “connected clusters” and the analysis
can be done for each connected cluster separately. From this,
it also follows that in order for the scalar product to be non-
zero, at least one spin of each singlet bond must again be in
a singlet bond on the other side of the scalar product.

The application of this algorithm on connected clusters
with s=0 gives a scalar product which is determined by the
minimum number of index exchanges y between bonds in
order to bring the two states into the same hws state,

<Ir/,x:0(i1’ slN)|¢€:0(l;’ ’llr\]»

T 1
=<dls:0(ll3 slN) |V V|¢S=0(i1, ’iN)>= 3—7’

(C2)
where V; {..i}o{/. - Jo={../}oli, . }o exchanges the indices be-
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tween two singlet bonds. This rule can most easily be under-
stood by first considering two equal states with (| y)=1.
Then by successively changing indices with V; ; in order to
create

Y
W)=V Vg

it is clear that the product state with |00) remains the same,
while product states involving |[+—) no longer agree. Each
application of V, therefore, reduces the scalar product by a
factor of 3. In an s=0 connected cluster of N sites, there are
N/2 singlet bonds. The exchange operator V can at most be
applied N/2—1 times between bonds in order to bring the
states into an equivalent form. Therefore, the scalar product
must be at least 1/3V2~! or larger between such states.
As an example, let us consider the states

I3) = {1,2}0{3,4}0{5.6}0{7.8}0{9, 10},

[4) ={1,10}{2. 5}o{4.6}o{7.8}{3.9%.
The scalar product (3|4) can be obtained from the number of
exchange operators which we need to transform the state [4)
into the state |3),
1
(3[4) = (3[V36V50V2103) = el (C3)
There are other possible choices of exchange operators V; j,

but the minimum number of exchanges is always y=3 in this
case.
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